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Applications

https://github.com/zhou13/neurvps

NeurVPS: Neural Vanishing Point Scanning via Conic Convolution

• After perspective projection, parallel lines intersect at the same
point, i.e., the vanishing point;

• Vanishing points bridge 2D and 3D by giving the 3D line
direction in camera space from a single 2D image.

Image source: Military Science and Tactics.

Geometric Intuition of Conic Convolution

(a) Ground Truth (b) True Proposal (c) False Proposal

(a) 3D Wireframe Lifting (b) Camera Calibration (c) Photo Forensics
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Accuracy of VPs with Naive CNNs

Related Work

Traditional Methods CNN-Based Methods

• Two-stage algorithms
• First, extract line 

segments from images
• Next, cluster lines based 

on their intersections
• Not end-to-end trainable
• Accurate, but outliers  

may result in total failure

• [1]: Divide images into 
patches and classify them

• [2]: Use neural networks 
to filter outlies

• Hard to utilize geometric 
properties of VPs

• Robust, but CNN only
gives a coarse estimation

Motivation
• Accurate as traditional line 

clustering algorithms;
• Robust as (convolutional) 

neural network-based algorithms;
• End-to-end trainable without 

using existing line detectors;
• Able to capture geometric cues

of vanishing points.
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(a) VP candidate inside the image (b) VP candidate outside the image

Network Structure Hierarchical Inference

(a) LSD/J-Linkage on SU3 [3]

Datasets and Visualization

(b) NeurVPS on [4] with GT (c) Ground Truth of ScanNet

Results

https://github.com/zhou13/neurvps

