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Introduction

* Parallel lines in 3D intersect in one point after projection
* Vanishing points are important as it gives the line direction in 3D
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Image source: Military Science and Tactics.



Related Work (Traditional Approaches)

Two-stage pipeline
Heuristic Line Segment Detection

 Canny Edge + Hough Transformation [1]

e LSD [2]
e Contour [3]
Line Clustering
e J-Linkage [4]
* Line RANSAC [5]
* Angle Histogram [6]
Problems
* Edges do not have semantic meaning
* Edges can be noisy
e Qutliers can result in total failure

[1] Kiryati, Nahum, Yuval Eldar, and Alfred M. Bruckstein. "A probabilistic Hough transform." Pattern
recognition 24.4 (1991): 303-316.

[2] Von Gioi, et al. “LSD: A fast line segment detector with a false detection control.” PAMI 32.4 (2008

[3] Zhou, Zihan, Farshid Farhat, and James Z. Wang. "Detecting dominant vanishing points in natural scenes
with application to composition-sensitive image retrieval." IEEE Transactions on Multimedia 19.12 (2017

[4] Tardif, Jean-Philippe. "Non-iterative approach for fast and accurate vanishing point detection." 2009 ICCV.
[5] Bazin, Jean-Charles, and Marc Pollefeys. "3-line ransac for orthogonal vanishing point detection." 2012
IEEE/RSJ International Conference on Intelligent Robots and Systems. IEEE, 2012.

[6] Li, Bo, et al. "Vanishing point detection using cascaded 1D Hough Transform from single images." Pattern
Recognition Letters 33.1 (2012): 1-8. 3
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Related Work (Neural Network Era) |
S
* Recent data-driven approaches e | [
e [1], [2], [3]: divide image into patches and do classification & SRSIENAS
* Hard to find vanishing point outside the image ;
* [4] uses neural network to filter outliers 5 Dhctnd VP o 151525 i
0]

Challenges:

* Neural network does not have a
geometric understanding of
vanishing points

* CNN only provides a coarse
estimations of vanishing points

Figure 2: Algorithm overview: 1) use global image context to estimate a prior over horizon lines (Sec. 3); 2) extract line
segments; 3) identify the zenith VP (Sec. 4.1); 4) sample horizon line candidates consistent with the zenith VP (Sec. 4.2); 5)
find VPs on horizon line candidates (Sec. 4.2); and 6) select the best horizon line based on the VPs it contains (Sec. 4.3).

[1] “Vanishing point detection with convolutional neural networks”, Ali Borji, arXiv 2016

[2] “DeepVP: Deep learning for vanishing point detection on 1 million street view images”, Chin-Kai Chang, Jiaping Zhao, and Laurent Itti. ICRA 2018

[3] “Dominant vanishing point detection in the wild with application in composition analysis”, Xiaodan Zhang, Xinbo Gao, Wen Lu, Lihuo He, and Qi Liu. NeuralComputing 2018 4
[4] “Detecting Vanishing Points using Global Image Context in a Non-Manhattan World” Menghua Zhai, Scott Workman, Nathan Jacobs. CVPR 2016



Poor Accuracy of CNNs on VP Detection

AA Curve @ 2.0 for SU3 Wireframe [49] AA Curve @ 45.0 for SU3 Wireframe [49]
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Design Philosophy of NeurVPS

* The overall approach has the advantages of
* accuracy of traditional line clustering algorithms
* robustness of neural network-based algorithms

* Neural networks should be trained end-to-end §
e without relying on line segment detectors

* New operators that captures geometric cues
* vanishing points are the intersections of lines
e operators should be local and stackable

Image Source: Wikipedia



Our Methods
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Conic Convolution

* Guided by vanishing point candidates (convolution center)

Conic Convolution Conic Convolution Plain Convolution
(vanishing point outside image plane) (vanishing point inside image plane)



Conic Convolution

* Guided by vanishing point candidates (convolution center)
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Conic Convolution

* Guided by vanishing point candidates (convolution center)
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Conic Convolution

* Guided by vanishing point candidates (convolution center)
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Conic Convolution

* Guided by vanishing point candidates (convolution center)

Conic Convolution
(vanishing point outside image plane)
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Plain Convolution
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Intuition Behind Conic Convolution

False Proposal

Ground Truth
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Coarse-to-Fine Inference

Image Vanishing Points

Hourglass Backbone

* Our network is essentially a vanishing point |
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A very brief review of Gaussian Sphere

* How to do uniform sampling for vanishing point?

1 !
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A very brief review of Gaussian Sphere

* How to do uniform sampling for vanishing point?
* We put the image on a sphere (Gaussian Sphere Representation)
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Hierarchical Inference
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Hierarchical Inference
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Hierarchical Inference
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Training

* We train multiple classifiers, each of which corresponds
to a different threshold;

Image Vanishing Points
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Training

* We train multiple classifiers, each of which corresponds

Image Vanishing Points

to a different threshold;
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Training

Image Vanishing Points

* We train multiple classifiers, each of which corresponds |
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Training

* We train multiple classifiers, each of which corresponds
to a different threshold;

* Sample one positive & one negative vanishing points for
each threshold;

* Randomly sample three vanishing points to reduce bias.
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Experiments

* Datasets
* Synthetic Urban 3D Dataset [1]
* Natural Scene Dataset [2]
* ScanNet Dataset [3]

* Evaluation Metric
* Angle Accuracy Curves Introduced

* Algorithms:
e 7 different vanishing point detection methods

[1] Zhou, Yichao, et al. "Learning to Reconstruct 3D Manhattan Wireframes from a Single Image." arXiv preprint arXiv:1905.07482 (2019).

[2] Zhou, Zihan, Farshid Farhat, and James Z. Wang. "Detecting dominant vanishing points in natural scenes with application to composition-sensitive image retrieval." IEEE
Transactions on Multimedia 19.12 (2017): 2651-2665.

[3] Dai, Angela, et al. "Scannet: Richly-annotated 3d reconstructions of indoor scenes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.



Experiment Settings

* ConicConv

e Testing with different number of layers
* 2 conic convolution layers
* 4 conic convolution layers
* 6 conic convolution layers

* Line clustering baselines

e LSD + J-Linkage [1]

e Contour + J-Linkage [2] (Only for dominating vanishing point detection)
* Deep learning baselines:

e Use the same number of parameters as 4x ConicConv

* REG: directly regress the vanishing point coordinates
e CLS: use vanishing point coordinates as features and do classification

[1] “Semi-automatic 3D Reconstruction of Piecewise Planar Building Models From Single Image ” Chen Feng, Fei Deng, Vineet R. Kamat.
[2] “Detecting Dominant Vanishing Points in Natural Scenes with Application to Composition-Sensitive Image Retrieval” Zihan Zhou, Farshid Farhat, and James Z. Wang



Synthetic Urban 3D Dataset [1] Visualization

Ground Truth Geometric Lines NeurVPS Results LSD + J-Linkage Results
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[1] Zhou, Yichao, et al. "Learning to Reconstruct 3D Manhattan Wireframes from a Single Image." arXiv preprint arXiv:1905.07482 (2019).



AA Curve @ 1.0 for SU3 Wireframe [49]
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AA Curve @ 6.0 for SU3 Wireframe [49]
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Figure 5: Angle accuracy curves for different methods on the SU3 wireframe dataset [49].
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Natural Scene Dataset [1] Visualization
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[1] Zhou, Zihan, Farshid Farhat, and James Z. Wang. "Detecting dominant vanishing points in natural scenes with application to composition-sensitive image retrieval." IEEE Transactions on 32
Multimedia 19.12 (2017): 2651-2665.



AA Curve @ 2 for the Natural Scene Dataset [50] AA Curve @ 20 for the Natural Scene Dataset [50]
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Figure 8: Angle accuracy curves for different methods on the natural scene dataset [S0].
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ScanNet Dataset [1] Visualization

ScanNet Image Samples Ground Truth Vanishing Points
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[1] Dai, Angela, et al. "Scannet: Richly-annotated 3d reconstructions of indoor scenes." Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition. 2017.



AA Curve @ 2 for the ScanNet Dataset [13]

AA Curve @ 20 for the ScanNet Dataset [13]
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Figure 9: Angle accuracy curves for different methods on the ScanNet dataset [13].
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